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1. Introduction

Noncommutative geometry [1] naturally appears in string theory [2, 3]. Low-energy effec-

tive theory of D-branes in a background NSNS B-field becomes the noncommutative field

theory where the spacetime coordinates xµ are noncommutative [xµ, xν ] 6= 0 [4 – 6]. On

the other hand, when we turn on the background RR field, low-energy effective theory

of D-branes becomes the field theory on non(anti)commutative superspace of which the

fermionic coordinate θα has nontrivial commutation relation {θα, θβ} 6= 0 [7 – 13]. Gauge

theories on non(anti)commutative superspace are studied extensively [14 – 17]. In the case

of constant B-field, the algebra of the coordinates becomes [xµ, xν ] = const., which is called

Heisenberg algebra (or Weyl algebra as an universal enveloping algebra of Heisenberg alge-

bra). Heisenberg group [18 – 20] is constructed from the Heisenberg algebra by exponential

mapping. If we include both of background NSNS and RR fields, it is expected that super

Heisenberg group [21] would appear.

Heisenberg group and its Schrödinger representation are defined rigourously in math-

ematics from the motivation of quantum mechanics [20]. Heisenberg group is constructed

as a central extension of a symplectic vector space and its matrix representation is con-

structed by triangular matrices. The commutation relation [xµ, xν ] = const. is regarded as

the operator representation (Schrödinger representation) of Heisenberg group. The matrix

representation of Heisenberg group is useful to construct noncommutative tori [22 – 24] and

quantum theta-functions [25 – 30]. Here noncommutative tori are defined by the commuta-

tor relation coming from the cocycle condition used in Heisenberg group. In this paper, for

the anologue of bosonic Heisenberg group, we find the representation of super Heisenberg
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group from the supermatrices which are also triangular up to exchange of their rows and

columns. This supermatrix representation is also applicable to the superspace deformed by

noncommutive and non-anticommutative parameters, and certain cases of non-central ex-

tensions. As in the bosonic case, the supermatrix representation of super Heisenberg group

is useful to construct noncommutative supertori and quantum super theta-functions [31].

Understanding in this direction will be necessary for investigating the properties of super-

symmetric field theories such as soliton solutions on noncommutative supertorus.

This paper is organized as follows. In section 2, we review the basics of noncommu-

tative space and the construction of the Heisenberg group. We also explain the relations

between the Heisenberg algebra, the operator representation of the Heisenberg group, and

the corresponding noncommutative space. In section 3, we construct the super Heisenberg

group and its supermatrix and operator representations extending the relations known in

the bosonic case. In section 4, we consider two types of deformed superspaces in relation

with super Heisenberg group; a two-dimensional superspace deformed by noncommutative

and non-anticommutative parameters, and a toy model of non-centrally extended ‘super

Heisenberg group’. We conclude in section 5.

2. Noncommutative space and Heisenberg group

2.1 Noncommutative space

Noncommutative space1 is defined as a space on which coordinates Xµ (µ = 1, 2, . . . , 2n)2

satisfies the commutation relation

[

Xµ,Xν
]

= iΘµν . (2.1)

Here Θµν is a constant. Without loss of generality, Θµν can take the block-diagonal form

Θµν =























Θ12

−Θ12

Θ34

−Θ34

. . .
. . .























. (2.2)

Then the commutation relation becomes

[

X2i−1,X2i
]

= iΘ2i−1,2i, i = 1, 2, . . . , n. (2.3)

In this basis, we can use the representation of Xµ as

X2i−1 =
√
Θ2i−1,2i si · , X2i = −i

√
Θ2i−1,2i

∂

∂si
. (2.4)

1In general, one can consider many kinds of noncommutative spaces. But we use the word noncommu-

tative space in the sence of (2.1).
2If there are odd number of the coordinates, one of them can commute with all other coordinates.
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The algebra of the functions on noncommutative space is equivalent to the algebra

of the functions on commutative space with the noncommutative product, which is called

Moyal product:

F (X) ∗G(X) = exp

(

i

2
Θµν ∂

∂Xµ

∂

∂X ′ν

)

F (X)G(X ′)

∣

∣

∣

∣

X′µ=Xµ

. (2.5)

2.2 Heisenberg group

We define a Heisenberg group, Heis(R2n, ψ). As a set Heis(R2n, ψ) is U(1) × R
2n. For

t, t′ ∈ U(1), and (x, y), (x′, y′) ∈ R
2n, we define (t, x, y), (t′, x′, y′) ∈ Heis(R2n, ψ),

(t, x, y) · (t′, x′, y′) = (t+ t′ + ψ(x, y;x′, y′), x+ x′, y + y′), (2.6)

where ψ : R
2n × R

2n −→ R, satisfies the cocycle condition

ψ(x, y;x′, y′)ψ(x + x′, y + y′;x′′, y′′) = ψ(x, y;x′ + x′′, y′ + y′′)ψ(x′, y′;x′′, y′′), (2.7)

which is a necessary and sufficient condition for the multiplication to be associative. There

is an exact sequence

0 → R
i→Heis(R2n, ψ)

j→R
2n → 0 (2.8)

called a central extension, with the inclusion i(t) = (t, 0, 0) and the projection j(t, x, y) =

(x, y), where i(R) is the center in Heis(R2n, ψ).

We now introduce two representations of this Heisenberg group Heis(R2n, ψ). One is

a matrix representation and the other is an operator representation.

First we introduce the matrix representation Heis(R2n, ψ) −→ Mat (n+2,n+2)(R) in two

ways. One of them is given by

(t, x, y) −→







1 x t

0 1 y

0 0 1






= M(t, x, y). (2.9)

In this case ψ(x, y;x′, y′) = xy′.

For the other one, we use the Lie algebra and Lie group approach. Let

M(t, x, y) =







0 x t

0 0 y

0 0 0






. (2.10)

Then

M(t, x, y) =







1 x t

0 1 y

0 0 1






=







1 0 0

0 1 0

0 0 1






+







0 x t

0 0 y

0 0 0






= I +M(t, x, y). (2.11)

For the second matrix representation, we define

π(t, x, y) := eM(t,x,y) = I +M +M2/2 + · · · =







1 x t+ xy
2

0 1 y

0 0 1






. (2.12)
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Then, Heis(R2n, ψ) with the cocycle ψ(x, y;x′, y′) = 1
2(xy′ − yx′) is isomorphically em-

bedded in Mat (n+2,n+2)(R). In this case, ψ becomes a symplectic form, and then this

representation can be extended to general symplectic vector spaces.3 We can easily show

that both M in (2.9) and π in (2.12) are group homomorphisms, which shows that they

are matrix representations of the Heisenberg group.

The Lie algebra introduced in the second matrix representation is a vector space iso-

morphic to R × R
2n generated by qi, pi (i = 1, . . . , n), and r such that

[qi, pj] = δijr, others = 0. (2.13)

The above Lie algebra is the so-called Heisenberg algebra, h(2n). A general element of this

Heisenberg algebra h(2n) is of the form x ·q+y ·p+tr. In the second matrix representation,

the generators are mapped as follows

qi → Qi =



















0 . . . 1 . . . 0
. . .

...
. . .

...
. . .

...

0



















, pi → Pi =



















0 . . . . . . . . . 0
. . .

...
. . . 1

. . .
...

0



















,

r → R =



















0 . . . . . . . . . 1
. . .

...
. . .

...
. . .

...

0



















, (2.14)

where the component 1 in Qi appears only in the (i+1)-th column of the first row, and the

component 1 in Pi appears only in the (i+ 1)-th row of the last column. In this notation,

π(t, x, y) in (2.12) can be expressed as

π(t, x, y) = ex·Q+y·P+tR. (2.15)

Note that π(t, x, y) · π(t′, x′, y′) can be expressed as

eM(t,x,y) · eM(t′,x′,y′) = eM(t,x,y)+M(t′,x′,y′)+ 1

2
[M(t,x,y),M(t′,x′,y′)]+··· (2.16)

and we will use this property in our computations.

Next, we explain the Schrödinger representation which is an operator representation

on L2(Rn) of the Heisenberg group, where L2(Rn) is the completion of the Schwarz space

on R
n. For this we reexpress the commutation relation of the Heisenberg algebra (2.13)

with new generators Xi, Yi, and I by the following map

qi −→ iXi, pi −→ iYi, r −→ −iI. (2.17)

3In general, (x, y) is a Darboux pair of the symplectic vector space and ψ is the symplectic form.
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Then we have

[Xi, Yj ] = iδijI, others = 0. (2.18)

A representation for Xi, Yi, I as operators can be given by

(Xif)(s) = sif(s), (Yif)(s) = −i ∂f
∂si

(s), I = identity, (2.19)

where s = (s1, . . . , sn). Note that the above Xi, Yi can be regarded as the noncommutative

coordinates Xµ introduced in the previous subsection.

For the operator representation of the first matrix representation M(t, x, y) with the

cocycle ψ(x, y;x′, y′) = xy′, we send (t, x, y) −→ χ(t)e(x)d(y), where

χ(t) : f(s) −→ e−itf(s),

e(x) : f(s) −→ eix·Xf(s) = eix·sf(s), (2.20)

d(x) : f(s) −→ eiy·Y f(s) = f(s+ y).

For the operator representation of the second matrix representation π(t, x, y) with the

cocycle ψ(x, y;x′, y′) = 1
2 (xy′ − yx′), we send (t, x, y) to U(t, x, y) = χ(t + xy

2 )e(x)d(y).

Note that U(t, x, y) can be rewritten as

U(t, x, y) = exp
[

i(x ·X + y · Y − tI)
]

, (2.21)

and this corresponds to π(t, x, y) in (2.15) via (2.17)

The noncommutative parameter is

Θ(x, y;x′, y′) = ψ(x, y;x′, y′) − ψ(x′, y′;x, y) = xy′ − yx′ (2.22)

for both cases. In the second case, ψ(x, y;x′, y′) = 1
2(xy′ − yx′), so that Θ = 2ψ.

In the later part of our work, we will use the second operator representation, which can

be mapped into a noncommutative space as we mentioned above, is irreducible and unitary.

And due to Stone-von Neumann-Mackey theorem, this is unique up to isomorphism.

Now we explain Stone-von Neumann-Mackey theorem [18 – 20]. First we define e :

R
2n × R

2n → R by e(z1, z2) = z̃1z̃2z̃1
−1z̃2

−1 where z1, z2 ∈ R
2n, and z̃i is a lifting of zi

which means j(z̃i) = zi. Then e is well defined independent of the choice of z̃i and is a skew-

symmetric pairing. In our case, e corresponds to Θ in (2.22). If for some subgroupH ⊂ R
2n,

e|H×H = 0, then H is called an isotropic subspace(or Largrangian). If H is maximal among

those isotropic subspaces, it is called a maximal isotropic subspace. For example, H can

be the x-space or the y-space or some combination. Now we state the theorem [18].

Theorem 1. (Stone, von Neumann, Mackey)

Let G = Heis(R2n, ψ) be a Heisenberg group. Then

(1) G has a unique irreducible unitary representation

U : G −→ Aut(H0) (2.23)

such that Ut = e−it · I for all t ∈ R.
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(2) For all maximal isotropic subgroup H ⊂ R
2n, and a lifting σ(z) = (α(z), z) of j

over H, where α is a group homomorphism from H to R, this representation may be

realized by

H0 = { measurable function f : R
2n → C, such that

a) f(z + h) = α(h)−1ψ(h, z)−1f(z), ∀h ∈ H,

b)

∫

|f(z)|2dz <∞. U(t,z′)f(z) = e−itψ(z, z′)f(z + z′), ∀z′ ∈ R
2n}.

(3) All representations (U,H) such that Ut = e−it·I, all t ∈ R, are isomorphic to H0⊗H1,

and G acting trivially on H1.

3. Super Heisenberg group

Now, we consider the extension of the work in the previous section to the super

case. As in the bosonic case, we define the super Heisenberg group, sHeis(R2n|2m, ψ),

as follows. For t, t′ ∈ U(1), and (x, α), (y, β), (x′ , α′), (y′, β′) ∈ R
n|m, we define

(t, x, y, α, β), (t′ , x′, y′, α′, β′) ∈ sHeis(R2n|2m, ψ) such that

(t, x, y, α, β) ·(t′ , x′, y′, α′, β′) = (t+t′+ψ(x, y, α, β;x′, y′, α′, β′), x+x′, y+y′, α+α′, β+β′),

(3.1)

where ψ : R
2n|2m × R

2n|2m −→ R, satisfies the cocycle condition

ψ(x, y, α, β;x′, y′, α′, β′)ψ(x+ x′, y + y′, α+ α′, β + β′;x′′, y′′, α′′, β′′) (3.2)

= ψ(x, y, α, β;x′ + x′′, y′ + y′′, α′ + α′′, β′ + β′′)ψ(x′, y′, α′, β′;x′′, y′′, α′′, β′′),

a necessary and sufficient condition for associative multiplication. Now, there is an exact

sequence

0 → R
i→ sHeis(R2n|2m, ψ)

j→R
2n|2m → 0, (3.3)

a central extension, with the inclusion i(t) = (t, 0), the projection j(t, z) = z, z ∈ R
2n|2m

, where i(R) is the center in sHeis(R2n|2m, ψ) := sH(2n|2m). As in the bosonic case,

we can introduce two types of matrix representations and the corresponding operator

representations for the super Heisenberg group.

First, we consider the matrix representations, sH(2n|2m) −→ Mat(n+2|m, n+2|m)(R).

The first matrix representation is given by

(t, x, y, α, β) −→











1 x t α

0 1 y 0

0 0 1 0

0 0 β 1











= M(t, x, y, α, β). (3.4)

In this case ψ(x, y, α, β;x′, y′, α′, β′) = xy′ + αβ′.

For the Lie algebra and Lie group approach, we let

M(t, x, y, α, β) := I +M(t, x, y, α, β), (3.5)
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where

M(t, x, y, α, β) =











0 x t α

0 0 y 0

0 0 0 0

0 0 β 0











. (3.6)

We then define

π(t, x, y, α, β) := eM(t,x,y,α,β) = I +M +M2/2 + · · · =











1 x t+ xy+αβ
2 α

0 1 y 0

0 0 1 0

0 0 β 1











. (3.7)

In this case ψ(x, y, α, β;x′, y′, α′, β′) = 1
2(xy′ − yx′ + αβ′ + βα′).

The super Lie algebra introduced in the second matrix representation is a vector space

isomorphic to R × R
2n|2m generated by qi, pi, ξa, λa (i = 1, . . . , n, a = 1, . . . ,m), and r

such that

[qi, pj ] = δijr, {ξa, λb} = δabr, others = 0. (3.8)

The above super Lie algebra is the so-called super Heisenberg algebra, sh(2n|2m). A

general element of this super Heisenberg algebra sh(2n|2m) is of the form x · q+ y · p+α ·
ξ + β · λ+ tr. In this representation, the generators are mapped as follows similar to the

bosonic case:

qi →











0 eti 0 0

0 0 0 0

0 0 0 0

0 0 0 0











, pi →











0 0 0 0

0 0 ei 0

0 0 0 0

0 0 0 0











, r →











0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0











,

ξa →











0 0 0 eta
0 0 0 0

0 0 0 0

0 0 0 0











, λa →











0 0 0 0

0 0 0 0

0 0 0 0

0 0 ea 0











, (3.9)

where ei is the column vector in which the i-th component is 1 and the others vanish, and

the same for ea.

Let V be a real super vector space of dimension 2n|2m with non-degenerate skew-

symmetric form ( , ). Let qi, pi, ξa, λa, for i = 1, . . . , n and a = 1, . . . ,m, be a basis of

V such that the matrix of ( , ) with respect to this basis is

φ =











0 1 0

−1 0

0 1

0 1 0











(3.10)

i.e. (qi, qj) = (pi, pj) = (ξa, ξb) = (λa, λb) = 0 and (qi, pj) = δij , (ξa, λb) = δab. Here φ

corresponds to the map e which we introduced for Stone-von Neumann-Mackey theorem

in the bosonic case. So V = V0̄ ⊗ V1̄, where {qi, pi} is a basis for V0̄ and {ξa, λa} a basis

– 7 –
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for V1̄. The super Heisenberg algebra sh(V ) can be constructed as a central extension of

the Abelian Lie superalgebra V by an even generator r [21]. We have an exact sequence

0 → R · r → sh(V ) → V → 0, and the Lie bracket is defined by [u, v] = (u, v)r,∀u, v ∈ V .

Then, sh(V ) = sh(2n|2m) .

The operator representation can be given as in the bosonic case. The target space

for the super Schrödinger representation is L2(Rn|m) := L2(Rn) ⊗ ∧∗(Rm)∗, which is the

completion of the Schwarz space S(Rn|m) := S(Rn)⊗∧∗(Rm)∗. Here
∧∗(Rm)∗ is the vector

space spanned by
{

v1 ∧ · · · ∧ vl|vi=(1,...,l) ∈ R
m, l ≦ m

}

.

For the operator representation, now we reexpress the commutation relation of the su-

per Heisenberg algebra (3.8) with new generators Xi, Yi, θ
1
a, θ

2
a and I by the following map

qi −→ iXi, pi −→ iYi, ξa −→ iθ1
a, λa −→ iθ2

a, r −→ −iI. (3.11)

Then we have

[Xi, Yj ] = iδijI, {θ1
a, θ

2
b} = iδabI, others = 0. (3.12)

A representation for Xi, Yi, θ
1
a, θ

2
a, and I for operators can be given by

(Xif)(s, η) = sif(s, η), (Yif)(s, η) = −i ∂f
∂si

(s, η),

(θ1
af)(s, η) = ηaf(s, η), (θ2

af)(s, η) = i
∂f

∂ηa
(s, η), (3.13)

I = identity,

where s = (s1, . . . , sn), η = (η1, . . . , ηm), and (s, η) belongs to R
n|m. Note that here again

Xi, Yi, θ
1
a, θ

2
a can be regarded as the coordinates of a non(anti)commutative superspace.

For the first operator representation, we send (t, x, y, α, β) to χ(t)ε(x, α)δ(y, β), where

(x, α), (y, β) ∈ R
n|m:

χ(t) : f(s, η) −→ e−itf(s, η),

ε(x, α) : f(s, η) −→ ei(x·X+α·θ1)f(s, η) = ei(x·s+α·η)f(s, η), (3.14)

δ(y, β) : f(s, η) −→ ei(y·Y +β·θ2)f(s, η) = f(s+ y, η + β).

For the second operator representation, we send (t, x, y, α, β) to U(t, x, y, α, β) = χ(t+
xy+αβ

2 )ε(x, α)δ(y, β). As in the bosonic case, U(t, x, y, α, β) can be rewritten as

U(t, x, y, α, β) = exp
[

i(x ·X + y · Y + α · θ1 + β · θ2 − tI)
]

. (3.15)

From now on, for the sake of brevity we will drop I for the identity, and will use the above

form (3.15) in the following section.

Supersymmetric extensions of the Stone-von Neumann theorem were considered in [32,

21]. It was shown in [21] that there exists a unique irreducible unitary sH(2n|2m) module

up to isomorphism described as in the bosonic case.
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4. Deformed superspace

4.1 Deformed N = (2, 2) superspace in two dimensions

First we introduce the two-dimensional N = (2, 2) superspace spanned by (Xµ, θα, θ̄α̇). θ

and θ̄ are transformed as a spinor and a conjugate spinor, respectively. We deform this

superspace by the following commutation relations [10, 11]:

[X1,X2] = iΘ − 2iCθ̄1θ̄2, [X1, θ1] = iCθ̄2, [X1, θ2] = iCθ̄1,

[X2, θ1] = Cθ̄2, [X2, θ2] = Cθ̄1, {θ1, θ2} = C, (4.1)

where θ̄’s commute or anticommute with other coordinates, i.e. the center. Θ and C are

constants. In the case of Θ = 0, (4.1) is obtained by dimensional reduction of the commu-

tation relation of non(anti)commutative N = 1 superspace in four dimensions.4 On the

other hand, in the case of C = 0, (4.1) reproduces the two-dimensional noncommutative

space (with usual fermionic coordinates). Although we do not derive (4.1) from super-

string, we use (4.1) as a simple unified expression of above two cases. The Moyal product

corresponding to (4.1) is given by

F (X, θ, θ̄) ∗G(X, θ, θ̄) =

exp

[

i

2
Θ(∂1∂

′
2 − ∂2∂

′
1) −

1

2
C(Q1Q′

2 + Q2Q′
1)

]

F (X, θ, θ̄)G(X ′, θ′, θ̄′)

∣

∣

∣

∣

(X′µ,θ′,θ̄′)=(Xµ,θ,θ̄)

,

(4.2)

where ∂µ = ∂/∂Xµ. Q1, Q2 are the supercharges defined by

Q1 =
∂

∂θ1
− iθ̄1(∂1 + i∂2), Q2 =

∂

∂θ2
− iθ̄2(∂1 − i∂2). (4.3)

∂′µ, Q′
1, Q′

2 are respectively obtained from ∂µ, Q1, Q2 by replacement (Xµ, θ, θ̄) →
(X ′µ, θ′, θ̄′). In general, from the consistency with supersymmetry, superspace can be de-

formed in terms of Moyal product which includes either supercharges Qα or supercovariant

derivatives Dα in order to obtain non(anti)commutativity in fermionic coordinates, where

Dα is defined by

D1 =
∂

∂θ1
+ iθ̄1(∂1 + i∂2), D2 =

∂

∂θ2
+ iθ̄2(∂1 − i∂2). (4.4)

Now Qα is used in the Moyal product as in (4.2). In this case, the half of the super-

symmetry is broken but the chirality of superfields is preserved. If Dα is used in the

Moyal product instead of Qα, the supersymmetry is fully preserved but the chirality of

superfields is broken [7, 10].

Now we change the normalization of the operators by

Xµ →
√
ΘXµ, θα →

√
iC θα, θ̄α̇ →

√

Θ

iC
θ̄α̇. (4.5)

4In four dimensions, there are three non(anti)commutative parameters C11, C12 and C22 in general.

The parameter C in (4.1) corresponds to C12. We have set C11 = C22 = 0 for simplicity.
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Then the commutation relations (4.1) become

[X1,X2] = i− 2θ̄1θ̄2, [X1, θ1] = θ̄2, [X1, θ2] = θ̄1,

[X2, θ1] = −iθ̄2, [X2, θ2] = −iθ̄1, {θ1, θ2} = −i, (4.6)

As in the bosonic case, we can introduce a unique operator representation of the above

algebra as in (3.15), as a representative of the corresponding super Heisenberg group

UA = exp
[

i
(

xAX
1 + yAX

2 + αAθ
1 + βAθ

2 − t̃A
)]

. (4.7)

This satisfies

UAUB = exp(−iΞAB)UBUA, (4.8)

ΞAB = (1 + 2iθ̄1θ̄2)(xAyB − xByA) + (αAβB − αBβA)

+i(xA − iyA)βB θ̄
1 − i(xB − iyB)βAθ̄

1

−i(xA + iyA)αB θ̄
2 + i(xB + iyB)αAθ̄

2. (4.9)

Now, we can give two types of corresponding supermatrix representations. One is the

4 × 4 supermatrix representation as

πA = exp
[

M(t̃A, xA, yA, αA, βA)
]

, (4.10)

M(t̃A, xA, yA;αA, βA) =











0 xA t̃A α̃A

0 0 yA 0

0 0 0 0

0 0 β̃A 0











, (4.11)

where

α̃A = αA − i(xA − iyA)θ̄1, β̃A = βA + i(xA + iyA)θ̄2. (4.12)

In order to obtain (4.11), It is convenient to use the chiral coordinate Y µ which is defined by

Y 1 = X1 + iθ1θ̄1 − iθ2θ̄2, Y 2 = X2 + θ1θ̄1 + θ2θ̄2. (4.13)

The commutation relation of Y µ and θα is

[Y 1, Y 2] = i, [Y µ, θα] = 0, {θ1, θ2} = −i. (4.14)

In terms of Y µ, (4.7) is rewritten as

UA = exp
[

i
(

xAY
1 + yAY

2 + α̃Aθ
1 + β̃Aθ

2 − t̃A

)]

. (4.15)

From (4.14) and (4.15), we obtain the representation (4.11). In this representation, we

regard θ̄1 and θ̄2 as grassmann numbers.

For the other type of matrix representation, we regard θ̄1 and θ̄2 as the operators

which belong to the center of the super Heisenberg group. The central element t̃A in (4.7)

is replaced with

t̃A → tA + ᾱAθ̄
1 + β̄Aθ̄

2 + uAθ̄
1θ̄2, (4.16)
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where tA, ᾱA, β̄A, uA are the parameters corresponding to the center of the super Heisen-

berg group I, θ̄1, θ̄2, θ̄1θ̄2, respectively. In this case, the representation is given by the 6×6

supermatrix π̃A as

π̃A = exp
[

M̃ (tA, xA, yA, uA, αA, βA, ᾱA, β̄A)
]

, (4.17)

M̃(tA, xA, yA, uA, αA, βA, ᾱA, β̄A) =



















0 xA tA αA 0 β̄A

0 0 yA 0 0 0

0 0 0 0 0 0

0 0 βA 0 0 −i(xA + iyA)

0 0 ᾱA i(xA − iyA) 0 uA

0 0 0 0 0 0



















. (4.18)

In terms of π̃A, as in (3.1), we have the multiplication rule

(tA, xA, yA, uA, αA, βA, ᾱA, β̄A) · (tB , xB , yB , uB , αB , βB , ᾱB , β̄B) =

(tAB , xA + xB , yA + yB, uAB , αA + αB , βA + βB , ᾱAB , β̄AB). (4.19)

Here tAB , uAB , ᾱAB and β̄AB are given by

tAB = tA + tB +
1

2
(xAyB − xByA) +

1

2
(αAβB − αBβA),

uAB = uA + uB + i(xAyB − xByA),

ᾱAB = ᾱA + ᾱB +
i

2
(xA − iyA)βB − i

2
(xB − iyB)βA,

β̄AB = β̄A + β̄B − i

2
(xA + iyA)αB +

i

2
(xB + iyB)αA. (4.20)

The commutation relation among π̃’s is the same as that of U ’s in (4.8):

π̃Aπ̃B = exp(ΩAB)π̃B π̃A, (4.21)

where

ΩAB =



















0 0 t[AB] 0 0 β̄[AB]

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 ᾱ[AB] 0 0 u[AB]

0 0 0 0 0 0



















(4.22)

and the bracket means antisymmetrization of indices.

4.2 Toy superspace with non-central extension

Super Heisenberg group is the central extension of the ordinary superspace. However, some

of noncommutative superspaces which cannot be obtained by central extension admit the

matrix representation similar to super Heisenberg group. In this section, we consider such

an example of the superspace with non-central extension.
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Here we start from the module which is given by f(s, ζ, ζ̄), where (s, ζ, ζ̄) is the coordi-

nates of ordinary one-dimensional superspace. From this module, we define the coordinates

of the two-dimensional deformed superspace by5

X̂1 =s · , X̂2 =−i ∂
∂s
, θ̂1 =−iζ · , ˆ̄θ1 =−iζ̄ · , θ̂2 =

∂

∂ζ
+ ζ̄

∂

∂s
, ˆ̄θ2 =

∂

∂ζ̄
+ ζ

∂

∂s
.

(4.23)

The nontrivial commutation relations are

[

X̂1, X̂2
]

= i,
[

X̂1, θ̂2
]

= −iˆ̄θ1,
[

X̂1, ˆ̄θ2
]

= −iθ̂1,
{

θ̂1, θ̂2} = −i,
{ ˆ̄θ1, ˆ̄θ2} = −i,

{

θ̂2, ˆ̄θ2} = 2iX̂2. (4.24)

The last eqation in (4.24) resembles the deformed superspace defined in [9]. Now the

commutators and the anticommutators contain the operators which are not centers. Then

this superspace is not a central extension of the ordinary two-dimensional superspace.6

Despite this, the matrix representation of (4.24) can be constructed as in the case of super

Heisenberg group. We define ÛA as follows like the representative of super Heisenberg

group in the previous subsection

ÛA = exp
[

i
(

x̂AX̂
1 + ŷAX̂

2 + α̂Aθ̂
1 + β̂Aθ̂

2 + ˆ̄αA
ˆ̄θ1 + ˆ̄βA

ˆ̄θ2 − t̂A

)]

. (4.25)

This satisfies

ÛAÛB = exp(−iΞ̂AB)ÛBÛA, (4.26)

where Ξ̂AB is given by

Ξ̂AB = (x̂AŷB − ŷAx̂B) +
(

α̂Aβ̂B + β̂Aα̂B

)

+
(

ˆ̄αA
ˆ̄βB + ˆ̄βA ˆ̄αB

)

+
3

2

(

β̂A
ˆ̄βB + ˆ̄βAβ̂B

)

(x̂A + x̂B) −
(

x̂A
ˆ̄βB − ˆ̄βAx̂B

)

θ̂1

−(x̂Aβ̂B − β̂Ax̂B)ˆ̄θ1 − 2(β̂A
ˆ̄βB + ˆ̄βAβ̂B)X̂2. (4.27)

We can assign the corresponding matrix representation of ÛA as the supermatrix π̂A

π̂A = exp
[

M̂
(

t̂A, x̂A, ŷA, α̂A, ˆ̄αA, β̂A,
ˆ̄βA

)]

, (4.28)

where M̂ is a 5 × 5 supermatrix given by

M̂
(

t̂A, x̂A, ŷA, α̂A, ˆ̄αA, β̂A,
ˆ̄βA

)

=

















0 x̂A t̂A α̂A ˆ̄αA

0 0 ŷA
ˆ̄βA β̂A

0 0 0 0 0

0 0 β̂A 0 0

0 0 ˆ̄βA 0 0

















. (4.29)

5Here we have already changed the normalization of the operators to absorb noncommutative and non-

anticommutative parameters as in the case of (4.6).
6However the bosonic part of this algebra is Heisenberg algebra.
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It is straightforward to check that π̂ satisfies the same commutation relation (4.26) of Û :

π̂Aπ̂B = exp(Ω̂AB)π̂B π̂A, (4.30)

where

Ω̂AB =















0 0 t̂[AB] α̂[AB] ˆ̄α[AB]

0 0 ŷ[AB] 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0















(4.31)

with t̂[AB], α̂[AB], ˆ̄α[AB], ŷ[AB] given as follows:

t̂[AB] = (x̂AŷB − ŷAx̂B) + (α̂Aβ̂B + β̂Aα̂B) + (ˆ̄αA
ˆ̄βB + ˆ̄βA ˆ̄αB)

+
3

2
(β̂A

ˆ̄βB + ˆ̄βAβ̂B)(x̂A + x̂B),

α̂[AB] = x̂A
ˆ̄βB − ˆ̄βAx̂B ,

ˆ̄α[AB] = x̂Aβ̂B − β̂Ax̂B ,

ŷ[AB] = 2(β̂A
ˆ̄βB + ˆ̄βAβ̂B). (4.32)

This confirms that we can use the above matrix representation instead of dealing with more

complicated operator manipulations.

5. Conclusion

In this paper, we construct the super Heisenberg group and corresponding supermatrix

representation by extending the result known in the bosonic case.

The low-energy effective theory of D-branes in a background NSNS B-field becomes

the noncommutative field theory, and the algebra of the coordinates becomes Heisenberg

algebra. From Heisenberg algebra, Heisenberg group can be constructed by exponential

mapping. The matrix representation of Heisenberg group is useful to construct noncom-

mutative tori and quantum theta-functions. One can construct noncommutative tori in a

easier manner via the embedding of the corresponding Heisenberg groups.

When the background RR field is turned on, the low-energy effective theory of D-

branes becomes the field theory on non(anti)commutative superspace of which the fermionic

coordinates have nontrivial commutation relations, and super Heisenberg group would

appear. For the anologue of bosonic Heisenberg group, the supermatrix representation of

super Heisenberg group can be constructed. We explicitly carry out this construction by

extending the relation known in the bosonic case to the super case: the two-dimensional

deformed N = (2, 2) superspace containing non(anti)commutativity in both bosonic and

fermionic coordinates. As in the bosonic case, the supermatrix representation of super

Heisenberg group would be useful to construct noncommutative supertori and quantum

super theta-functions [31].

Furthermore, this supermatrix representation is also applicable to deformed super-

spaces corresponding to non-centrally extended ‘super Heisenberg groups’. We demonstrate

this construction with a toy model of two-dimensional deformed superspace at the end.
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